4.8 Article

Low-Cost High-Energy Potassium Cathode

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 6, 页码 2164-2167

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b12598

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering [DE-SC0005397]
  2. U.S. National Science Foundation [CBET-1438007]
  3. Lawrence Berkeley National Lab BMR Program [7223523]
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1438007] Funding Source: National Science Foundation

向作者/读者索取更多资源

Potassium has as rich an abundance as sodium in the earth, but the development of a K-ion battery is lagging behind because of the higher mass and larger ionic site of K+ than that of Li+ and Na+, which makes it difficult to identify a high-voltage and high capacity intercalation cathode host. Here we propose a cyanoperovskite KxMnFe(CN)(6) (0 <= x <= 2) as a potassium cathode: high-spin Mn-III/Mn-II and low-spin Fe-III/F-II couples have similar energies and exhibit two close plateaus centered at 3.6 V; two active K+ per formula unit enable a theoretical specific capacity of 156 mAh g(-1); Mn and. Fe are the two most-desired transition metals for electrodes because they are cheap and; environmental friendly. As a powder prepared by an inexpensive precipitation method, the cathode delivers a specific capacity of 142 mAh g(-1). The observed voltage, capacity, and its low cost make it competitive In large-scale electricity storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据