4.8 Article

A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 45, 页码 16235-16247

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b07818

关键词

-

资金

  1. National Key RAMP
  2. D Program of China [2016YFA0203700]
  3. National Nature Science Foundation of China [51672303, 51722211]
  4. CAST [201SQNRC001]
  5. Youth Innovation Promotion Association of the Chinese Academy of Sciences [2013169]
  6. Development Fund for Shanghai Talents

向作者/读者索取更多资源

Conventionally, ceramics-based materials, fabricated by high-temperature solid-phase reaction and sintering, are preferred as bone scaffolds in hard-tissue engineering because of their tunable biocompatibility and mechanical properties. However, their possible biomedical applications have rarely been considered, especially the cancer photo therapeutic applications in both the first and second near infrared light (NIR-I and NIR-II) biowindows. In this work, we explore, for the first time as far as we know, a novel kind of 2D niobium carbide (Nb2C), MXene, with highly efficient in vivo photothermal ablation of mouse tumor xenografts in both NIR-I and NIR-II windows. The 2D Nb2C nanosheets (NSs) were fabricated by a facile and scalable two-step liquid exfoliation method combining stepwise delamination and intercalation procedures. The ultrathin, lateral-nanosized Nb2C NSs exhibited extraordinarily high photothermal conversion efficiency (36.4% at NIR-I and 45.65% at NIR-II), as well as high photothermal stability. The Nb2C NSs intrinsically feature unique enzyme-responsive biodegradability to human myeloperoxidase, low phototoxicity, and high biocompatibility. Especially, these surface-engineered Nb2C NSs present highly efficient in vivo photothermal ablation and eradication of tumor in both NIR-I and NIR-II biowindows. This work significantly broadens the application prospects of 2D MXenes by rationally designing their compositions and exploring related physiochemical properties, especially on phototherapy of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据