4.8 Article

Selective Photocatalytic CO2 Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 21, 页码 7217-7223

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b00369

关键词

-

资金

  1. Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy)
  2. Christian Doppler Research Association (National Foundation for Research, Technology and Development)
  3. OMV Group
  4. Isaac Newton Trust [12.38/k]
  5. German Research Foundation [KU 3077/2-1]
  6. World Premier International Research Center Initiative (WPI), MEXT, Japan

向作者/读者索取更多资源

Photocatalytic conversion of CO2 into carbonaceous feedstock chemicals is a promising strategy to mitigate greenhouse gas emissions and simultaneously store solar energy in chemical form. Photocatalysts for this transformation are typically based on precious metals and operate in nonaqueous solvents to suppress competing H-2 generation. In this work, we demonstrate selective visible-light-driven CO2 reduction in water using a synthetic photocatalyst system that is entirely free of precious metals. We present a series of self-assembled nickel terpyridine complexes as electrocatalysts for the reduction of CO2 to CO in organic media. Immobilization on CdS quantum dots allows these catalysts to be active in purely aqueous solution and photocatalytically reduce CO2 with >90% selectivity under UV-filtered simulated solar light irradiation (AM 1.5G, 100 mW cm(-2), lambda > 400 nm, pH 6.7, 25 degrees C). Correlation between catalyst immobilization efficiency and product selectivity shows that anchoring the molecular catalyst on the semiconductor surface is key in controlling the selectivity for CO2 reduction over H-2 evolution in aqueous solution

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据