4.8 Article

Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 23, 页码 8022-8028

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b03850

关键词

-

资金

  1. Welch Foundation [AX-1730]

向作者/读者索取更多资源

Selective separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) needs specific porous materials whose pores can realize sieving effects while pore surfaces can differentiate their recognitions for these molecules of similar molecular sizes and physical properties. We report a microporous material [Zn(dps)(2)(SiF6)] (UTSA-300, dps = 4,4'-dipyridylsulfide) with two-dimensional channels of about 3.3 angstrom, well-matched for the molecular sizes of C2H2. After activation, the network was transformed to its closed-pore phase, UTSA-300a, with dispersed 0D cavities, accompanied by conformation change of the pyridyl ligand and rotation of SiF62- pillars. Strong CH center dot center dot center dot F and pi-pi stacking interactions are found in closed-pore UTSA-300a, resulting in shrinkage of the structure. Interestingly, UTSA-300a takes up quite a large amounts of acetylene (76.4 cm(3) g(-1)), while showing complete C2H4 and CO2 exclusion from C2H2 under ambient conditions. Neutron powder diffraction and molecular modeling studies clearly reveal that a C2H2 molecule primarily binds to two hexafluorosilicate F atoms in a head-on orientation, breaking the original intranetwork hydrogen bond and subsequently expanding to open-pore structure. Crystal structures, gas sorption isotherms, molecular modeling, experimental breakthrough experiment, and selectivity calculation comprehensively demonstrated this unique metal-organic framework material for highly selective C2H2/CO2 and C2H2/C2H4 separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据