4.8 Article

Preventing Alkyne-Alkyne (i.e., Glaser) Coupling Associated with the ATRP Synthesis of Alkyne-Functional Polymers/Macromonomers and for Alkynes under Click (i.e., CuAAC) Reaction Conditions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 10, 页码 3756-3766

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b12525

关键词

-

资金

  1. US Army Research Office [W911NF1010184, W911NF1110372]
  2. National Science Foundation [DMR1206191]

向作者/读者索取更多资源

Alkyne-functional polymers synthesized by ATRP exhibit bimodal molecular weight distributions indicating the occurrence of some undesirable side reaction. By modeling the molecular weight distributions obtained under various reaction conditions, we show that the side reaction is alkyne alkyne (i.e., Glaser) coupling. Glaser coupling accounts for as much as 20% of the polymer produced, significantly compromising the polymer functionality and undermining the success of subsequent click reactions in which they are used. Glaser coupling does not occur during ATRP but during postpolymerization workup upon first exposure to air. Two strategies are reported that effectively eliminate these coupling reactions without the need for a protecting group for the alkyne-functional initiator: (1) maintaining low temperature post-ATRP upon exposure to air followed by immediate removal of copper catalyst; (2) adding excess reducing agents post-ATRP which prevent the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. We find that Glaser coupling is not problematic in ARGET-ATRP of alkyne-terminated polymers because a reducing agent is present during polymerization, however the molecular weight distribution is broadened compared to ATRP due to the presence of oxygen. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据