4.8 Article

Ruthenium-Catalyzed Site-Selective Intramolecular Silylation of Primary C-H Bonds for Synthesis of Sila-Heterocycles

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 33, 页码 11601-11609

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b06798

关键词

-

资金

  1. National Key R&D Program of China [2015CB856600, 2016YFA0202900]
  2. National Natural Science Foundation of China [21432011, 21422209, 21421091, 21572255]
  3. Chinese Academy of Sciences [XDB20000000]

向作者/读者索取更多资源

Incorporating the silicon element into bioactive organic molecules has received increasing attention in medicinal chemistry. Moreover, organosilanes are valuable synthetic intermediates for fine chemicals and materials. Transition metal-catalyzed C-H silylation has become an important strategy for C-Si bond formations. However, despite the great advances in aromatic C(sp(2))-H bond silylations, catalytic methods for aliphatic C(sp(3))-H bond silylations are relatively rare. Here we report a pincer ruthenium catalyst for intramolecular silylations of various primary C(sp(3))-H bonds adjacent to heteroatoms (O, N, Si, Ge), including the first intramolecular silylations of C H bonds a to O, N, and Ge. This method provides a general, synthetically efficient approach to novel classes of Si-containing five-membered [1,3]-silaheterocycles, including oxasilolanes, azasilolanes, disila-heterocycles, and germasilolane. The trend in the reactivity of five classes of C(sp(3))-H bonds toward the Ru-catalyzed silylation is elucidated. Mechanistic studies indicate that the rate-determining step is the C H bond cleavage involving a ruthenium silyl complex as the key intermediate, while a eta(2)-silene ruthenium hydride species is determined to be an off-cycle intermediate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据