4.4 Article

Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis

期刊

NETWORK NEUROSCIENCE
卷 3, 期 3, 页码 763-778

出版社

MIT PRESS
DOI: 10.1162/netn_a_00093

关键词

Brain dynamics; TDA; fMRI; Brain networks; Mapper

资金

  1. National Institute of Mental Health [R00 MH104605]
  2. National Institute of General Medical Sciences [T32 GM008294]
  3. National Institutes of Health [DP2 MH119735]

向作者/读者索取更多资源

In this article, we present an open source neuroinformatics platform for exploring, analyzing, and validating distilled graphical representations of high-dimensional neuroimaging data extracted using topological data analysis (TDA). TDA techniques like Mapper have been recently applied to examine the brain's dynamical organization during ongoing cognition without averaging data in space, in time, or across participants at the outset. Such TDA-based approaches mark an important deviation from standard neuroimaging analyses by distilling complex high-dimensional neuroimaging data into simple-yet neurophysiologically valid and behaviorally relevant-representations that can be interactively explored at the single-participant level. To facilitate wider use of such techniques within neuroimaging and general neuroscience communities, our work provides several tools for visualizing, interacting with, and grounding TDA-generated graphical representations in neurophysiology. Through Python-based Jupyter notebooks and open datasets, we provide a platform to assess and visualize different intermittent stages of Mapper and examine the influence of Mapper parameters on the generated representations. We hope this platform could enable researchers and clinicians alike to explore topological representations of neuroimaging data and generate biological insights underlying complex mental disorders. Author SummaryTo develop biologically grounded psychiatric diagnosis, researchers and clinicians need tools for distilling complex high-dimensional neuroimaging data into simple yet interactive and clinically relevant representations. Further, for translational outcomes, these representations should be conceivable at the single-participant level. Topological data analysis techniques such as Mapper allow generation of these representations. Here, we introduce a set of tools that can facilitate wider acceptance of Mapper within the neuroscience community and provide a series of easy-to-follow steps for visualizing Mapper-generated graphical representations. We provide detailed examples to reveal the under-the-hood workings of Mapper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据