4.8 Article

Small Molecule Recognition Triggers Secondary and Tertiary Interactions in DNA Folding and Hammerhead Ribozyme Catalysis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 29, 页码 9815-9818

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b05448

关键词

-

资金

  1. NSF-DMR
  2. NIH

向作者/读者索取更多资源

We have identified tris(2-aminoethyl)amine (tren)-derived scaffolds with two (t2M) or four (t4M) melamine rings that can target oligo T/U domains in DNA/RNA. Unstructured T-rich DNAs cooperatively fold with the tren derivatives to form hairpin-like structures. Both t2M and t4M act as functional switches in a family of hammerhead ribozymes deactivated by stem or loop replacement with a U-rich sequence. Catalysis of bond scission in these hammerhead ribozymes could be restored by putative t2M/t4M refolding of stem secondary structure or tertiary bridging interactions between loop and stem. The simplicity of the t2M/t4M binding site enables programming of allostery in RNAs, recoding oligo-U domains as potential sites for secondary structure or tertiary contact. In combination with a facile and general method for installation of the t2M motif on primary amines, the method described herein streamlines design of synthetic allosteric riboswitches and small molecule-nucleic acid complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据