4.8 Article

Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 16, 页码 5842-5848

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b00502

关键词

-

资金

  1. German Research Foundation (DFG) [He1574/11-2, DU1668/1-1]
  2. Leibniz Universitat Hannover [EPSRC: EP/H001220]

向作者/读者索取更多资源

Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF2, by ball milling it with BaF2, to create nanostructured Ba1-xCaxF2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including simulating synthesis, we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba1-xCaxF2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [Nature 2015, 521, 303] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated snake-like ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 A in length, which indicates long-range correlation in our disordered systems. Similarly, collective transport in glassy materials is well documented [for example, J. Chem. Phys. 2013, 138, 12A.538]. Possible crystallographic nomenclatures, to be used to describe long-range order in disordered systems, may include, for example, the shape, length, and branching of the snake arrays. Such characterizations may ultimately provide insight and differences between long-range order in disordered, amorphous, or liquid states and processes such as ionic conductivity, melting, and crystallization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据