4.8 Article

The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 16, 页码 5793-5800

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.6b12265

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

We report electric field values relevant to the reactant and transition states of designed Kemp eliminases KE07 and KE70 and their improved variants from laboratory directed evolution (LDE), using atomistic simulations with the AMOEBA polarizable force field. We find that the catalytic base residue contributes the most to the electric field stabilization of the transition state of the LDE variants of the KE07 and KE70 enzymes, whereas the electric fields of the remainder of the enzyme and solvent disfavor the catalytic reaction in both cases. By contrast, we show that the electrostatic environment plays a large and stabilizing role for the naturally occurring enzyme ketosteroid isomerase (KSI). These results suggest that LDE is ultimately a limited strategy for improving de novo enzymes since it is largely restricted to optimization of chemical positioning in the active site, thus yielding a similar to 3 order magnitude improvement over the uncatalyzed reaction, which we suggest may be an absolute upper bound estimate based on LDE applied to comparable de novo Kemp eliminases and other enzymes like KSI. Instead de novo enzymatic reactions could more productively benefit from optimization of the electrostatics of the protein scaffold in early stages of the computational design, utilizing electric field optimization as guidance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据