4.8 Article

Chiral Covalent Organic Frameworks with High Chemical Stability for Heterogeneous Asymmetric Catalysis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 25, 页码 8693-8697

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b04008

关键词

-

资金

  1. National Science Foundation of China [21371119, 21431004, 21401128, 21522104, 21620102001]
  2. National Key Basic Research Program of China [2014CB932102, 2016YFA 0203400]
  3. Shanghai Eastern Scholar Program

向作者/读者索取更多资源

Covalent organic frameworks (COFs) featuring chirality, stability, and function are of both fundamental and practical interest, but are yet challenging to achieve. Here we reported the metal-directed synthesis of two chiral COFs (CCOFs) by imine-condensations of enantiopure 1,2-diaminocyclohexane with C-3-symmetric trisalicylaldehydes having one or zero 3-tert-butyl group. Powder X-ray diffraction and modeling studies, together with pore size distribution analysis demonstrate that the Zn(salen)-based CCOFs possess a two-dimensional hexagonal grid network with AA stacking. Dramatic enhancement in the chemical stability toward acidic (1 M HCl) and basic (9 M NaOH) conditions was observed for the COF incorporated with tert-butyl groups on the pore walls compared to the nonalkylated analog. The Zn(salen) modules in the CCOFs allow for installing multivariate metals into the frameworks by postsynthetic metal exchange. The exchanged CCOFs maintain high crystallinity and porosity and can serve as efficient and recyclable heterogeneous catalysts for asymmetric cyanation of aldehydes, Diels-Alder reaction, alkene epoxidation, epoxide ring-opening, and related sequential reactions with up to 97% ee.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据