4.8 Article

Structural Basis for Aza-Glycine Stabilization of Collagen

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 139, 期 28, 页码 9427-9430

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.7b03398

关键词

-

资金

  1. University of Pennsylvania

向作者/读者索取更多资源

Previously, we have demonstrated that replacement of the strictly conserved glycine in collagen with aza-glycine provides a general solution for stabilizing triple helical collagen peptides (Chenoweth, D. M.; et al. J. Am. Chem. Soc. 2016, 138, 9751; 2015, 137, 12422). The additional hydrogen bond and conformational constraints provided by aza-glycine increases the thermal stability and rate of folding in collagen peptides composed of Pro-Hyp-Gly triplet repeats, allowing for truncation to the smallest self-assembling peptide systems observed to date. Here we show that aza-glycine substitution enhances the stability of an arginine-containing collagen peptide and provide a structural basis for this stabilization with an atomic resolution crystal structure. These results demonstrate that a single nitrogen atom substitution for a glycine alpha carbon increases the peptide's triple helix melting temperature by 8.6 degrees C. Furthermore, we provide the first structural basis for stabilization of triple helical collagen peptides containing aza-glycine and we demonstrate that minimal alteration to the peptide backbone conformation occurs with aza-glycine incorporation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据