4.4 Article

Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods

期刊

INFORMS JOURNAL ON COMPUTING
卷 31, 期 3, 页码 544-558

出版社

INFORMS
DOI: 10.1287/ijoc.2018.0841

关键词

convex optimization; radiation therapy; treatment planning; clustering; optimality bounds; matrix factorization; dimensionality reduction

资金

  1. National Institutes of Health [5R01CA176553]
  2. Stanford Bio-X Bowes Graduate Fellowship

向作者/读者索取更多资源

Radiation therapy is widely used in cancer treatment; however, plans necessarily involve tradeoffs between tumor coverage and mitigating damage to healthy tissue. Although current hardware can deliver custom-shaped beams from any angle around the patient, choosing (from all possible beams) an optimal set of beams that maximizes tumor coverage while minimizing collateral damage and treatment time is intractable. Furthermore, even though planning algorithms used in practice consider highly restricted sets of candidate beams, the time per run combined with the number of runs required to explore clinical tradeoffs results in planning times of hours to days. We propose a suite of cluster and bound methods that we hypothesize will (1) yield higher-quality plans by optimizing over much (i.e., 100-fold) larger sets of candidate beams, and/or (2) reduce planning time by allowing clinicians to search through candidate plans in real time. Our methods hinge on phrasing the treatment-planning problem as a convex problem. To handle large-scale optimizations, we form and solve compressed approximations to the full problem by clustering beams (i.e., columns of the dose deposition matrix used in the optimization) or voxels (rows of the matrix). Duality theory allows us to bound the error incurred when applying an approximate problem's solution to the full problem. We observe that beam clustering and voxel clustering both yield excellent solutions while enabling a 10- to 200-fold speedup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据