4.6 Article

Deep Radiomic Analysis Based on Modeling Information Flow in Convolutional Neural Networks

期刊

IEEE ACCESS
卷 7, 期 -, 页码 97242-97252

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2930238

关键词

Entropy; information flow; deep learning; radiomics

资金

  1. McGill University

向作者/读者索取更多资源

This paper proposes a novel image feature set based on a principled information theoretic analysis of the convolutional neural network (CNN). The output of convolutional filters is modeled as a random variable conditioned on the object class and network filter bank. The conditional entropy (CENT) of filter outputs is shown in theory and experiments to be a highly compact and class-informative feature that can be computed from the CNN feature maps and used to obtain higher classification accuracy than the original CNN itself. Experiments involve three binary classification tasks using the 3D brain MRI data: Alzheimer's disease (AD) versus healthy controls (HC), young versus old age, and male versus female, where the area under the curve (AUC) values for the CENT feature classification (93.9%, 96.7%, and 71.9%) are significantly higher than the softmax output of the original CNN classifier trained for the task (81.6%, 79.4%, and 63.1%). A statistical analysis based on the Wilcoxon test identifies CENT features with significant links to brain labels, which could potentially serve as diagnostic biomarkers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据