4.6 Article

A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 7, 期 31, 页码 4854-4866

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tb00448c

关键词

-

资金

  1. National Natural Science Foundation of China [31670972]
  2. Taishan Scholar Program, China

向作者/读者索取更多资源

The efficient delivery of vaccines to draining lymph nodes and the induction of robust local immune responses are crucial for immunotherapy. Transdermal administration has been evidenced to facilitate the delivery of ingredients to lymph nodes. In this study, transfersomes with opposite surface charges were applied for antigen encapsulation and these were integrated with dissolving microneedles to investigate their effects on immune responses via transdermal immunization. The microneedles were easily inserted into mouse skin and achieved the local release of nanovaccines into the dermis through dissolution. Although anionic nanovaccines promoted cellular uptake via DC2.4, cationic nanovaccines exhibited stronger escape capacities from endocytic compartments, facilitating antigen processing via an MHC-I presentation pathway, and formed larger accumulations in lymph nodes. Compared with their anionic counterparts, the cationic nanovaccines more efficiently activated DC maturation and induced Th1 immunity; this was suggested by the significantly increased IgG2a/IgG1 ratio and elevated cytokine secretion from Th1 cells, without an enhancement in the Th2 response. Such an enhanced Th1 antigen-specific immune response in lymph nodes via a transdermal vaccine delivery platform is beneficial for potential immunotherapy approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据