3.9 Review

Persistence homology of networks: methods and applications

期刊

APPLIED NETWORK SCIENCE
卷 4, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1007/s41109-019-0179-3

关键词

Persistent homology; Networks; Simplicial complex; Filtration

向作者/读者索取更多资源

Information networks are becoming increasingly popular to capture complex relationships across various disciplines, such as social networks, citation networks, and biological networks. The primary challenge in this domain is measuring similarity or distance between networks based on topology. However, classical graph-theoretic measures are usually local and mainly based on differences between either node or edge measurements or correlations without considering the topology of networks such as the connected components or holes. In recent years, mathematical tools and deep learning based methods have become popular to extract the topological features of networks. Persistent homology (PH) is a mathematical tool in computational topology that measures the topological features of data that persist across multiple scales with applications ranging from biological networks to social networks. In this paper, we provide a conceptual review of key advancements in this area of using PH on complex network science. We give a brief mathematical background on PH, review different methods (i.e. filtrations) to define PH on networks and highlight different algorithms and applications where PH is used in solving network mining problems. In doing so, we develop a unified framework to describe these recent approaches and emphasize major conceptual distinctions. We conclude with directions for future work. We focus our review on recent approaches that get significant attention in the mathematics and data mining communities working on network data. We believe our summary of the analysis of PH on networks will provide important insights to researchers in applied network science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据