4.8 Article

Spontaneous open-circuit voltage gain of fully fabricated organic solar cells caused by elimination of interfacial energy disorder

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 12, 期 8, 页码 -

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ee00825j

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [21702154, 51773157]
  2. Natural Science Foundation of Hubei Province [2017CFB118]
  3. Fundamental Research Funds for the Central Universities [2042017kf0269]
  4. NSFC [51603051, 51503156]

向作者/读者索取更多资源

The realization of high open-circuit voltage (V-oc) in organic solar cells (OSCs) mainly depends on the delicate donor (D) and acceptor (A) structures, meticulously optimized bulk heterojunction (BHJ) microstructure and functionalized interfacial materials. In this work, we demonstrate a spontaneous V-oc gain in efficient OSCs without sacrificing the short-circuit current (J(sc)) and fill factor (FF). Using a combination of device studies and morphological analysis, we point out that the spontaneous phenomenon occurred at the bottom of the BHJ layer, which is caused by [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) acceptors spontaneously migrating to the BHJ/ZnO interface under ambient conditions. Furthermore, physical characterization determines the relation between morphology evolution and spontaneous V-oc enhancement, which mainly results from the eliminated energetic disorder at the BHJ/ZnO interface. The investigation of surface energy parameters among selected components highlights the wetting coefficient as a dominant dynamic for this spontaneous phenomenon. Besides, a wide range of photovoltaic systems introduced for enabling parallel verification also confirm the effect of the interfacial surface energy on V-oc spontaneous enhancement in inverted solar cells. These findings exemplify the importance of surface energy modification as a tool for improved interfaces of layered morphology, and open new routes to device interfacial optimization using novel design strategies of photoactive materials and interfacial materials. Such a spontaneous phenomenon may open a novel field for making materials work in an intelligent way in organic electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据