4.6 Article

Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction

期刊

ENVIRONMENTAL SCIENCE-NANO
卷 6, 期 8, 页码 2379-2388

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9en00545e

关键词

-

资金

  1. National Science Foundation of China [21878049, 21336001]
  2. Qaidam Salt Lake Chemical Joint Research Fund Project of NSFC
  3. Qinghai Province State People's Government [U1507103]

向作者/读者索取更多资源

Capacitive deionization (CDI) is a promising electrochemical water desalination technology due to its advantages of low cost and high energy efficiency. However, the ion removal capacity (IRC) of CDI is insufficient for practical application because its capacity is limited by the electrochemical ad-/desorption capacity of porous carbon electrodes. Therefore, improving the IRC of a CDI system is one of the most urgent issues in CDI technology. Here, the self-assembly of two-dimensional (2D) MnO2 nanosheets with Na+ ions (NaMnO2) was carried out and the formation of sandwich structures with expanded interlayer distances was reported. Simultaneously, 3D CNT/NaMnO2 with high conductivity and porous structure was also designed and prepared. The two layered MnO2-based nanomaterials with expanded interlayer spacing and an open porous structure were evaluated as hybrid capacitive deionization (HCDI) redox-active intercalation electrodes. The two as-obtained materials with an open porous structure and expanded interlayer spacing can provide a short ion diffusion path and allow the Na+ ions to diffuse to the active sites more easily. Moreover, the high conductivity of CNT/ NaMnO2 not only can facilitate ion diffusion, but also improve the utilization of NaMnO2 pseudocapacitive electrodes. As expected, both material-based cells demonstrated an excellent IRC of 28.3 and 40.0 mg g(-1) for NaMnO2//AC and 32.7 and 42.6 mg g(-1) for CNT/NaMnO2//AC in 500 and 20000 mg L-1 NaCl solution, respectively. Additionally, the Na+ ion storage mechanism and the reason for capacity decay of these HCDI cells were explored. Consequently, NaMnO2 and CNT/NaMnO2 with an open porous structure and expanded interlayer spacing would be promising materials for application in HCDI systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据