4.1 Article

Ultrasoft Silicone Gel as a Biomimetic Passivation Layer in Inkjet-Printed 3D MEA Devices

期刊

ADVANCED BIOSYSTEMS
卷 3, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adbi.201900130

关键词

additive manufacturing; bioelectronics; biomimetic systems; cortical neurons; PDMS

资金

  1. Tohoku University (Leading Young Researcher Overseas Visit Program)
  2. Japan Society for the Promotion of Science (Kakenhi) [18H03325]
  3. Japan Science and Technology Agency [PRESTO: JPMJPR18MB, CREST: JPMJCR14F3]
  4. Bernstein Center for Computational Neuroscience (BMBF) [01GQ1004A]

向作者/读者索取更多资源

Multielectrode arrays (MEAs) are versatile tools that are used for chronic recording and stimulation of neural cells and tissues. Driven by the recent progress in understanding of how neuronal growth and function respond to scaffold stiffness, development of MEAs with a soft cell-to-device interface has gained importance not only for in vivo but also for in vitro applications. However, the passivation layer, which constitutes the majority of the cell-device interface, is typically prepared with stiff materials. Herein, a fabrication of an MEA device with an ultrasoft passivation layer is described, which takes advantage of inkjet printing and a polydimethylsiloxane (PDMS) gel with a stiffness comparable to that of the brain. The major challenge in using the PDMS gel is that it cannot be patterned to expose the sensing area of the electrode. This issue is resolved by printing 3D micropillars at the electrode tip. Primary cortical neurons are grown on the fabricated device, and effective stimulation of the culture confirms functional cell-device coupling. The 3D MEA device with an ultrasoft interface provides a novel platform for investigating evoked activity and drug responses of living neuronal networks cultured in a biomimetic environment for both fundamental research and pharmaceutical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据