4.6 Article

In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent

期刊

NANOSCALE ADVANCES
卷 1, 期 1, 页码 168-176

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8na00132d

关键词

-

资金

  1. National Natural Science Foundation of China [51502185, 21501127]
  2. Nantong Science and Technology Project [GY12016030]
  3. Jiangsu Advanced Textile Engineering Centre Project [SPPGO[2014]22]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  5. Jiangsu Province Annual Ordinary University Graduate Student Research and Innovation Project [KYLX16_0138]

向作者/读者索取更多资源

In this work, the treatment of textile wastewater by a facile and high-efficiency technology using ecofriendly Aspergillus niger as a biosorbent was investigated. We measured physical changes (weight, size) during the formation and growth of fungus pellets and the pH values that influence the adsorption performance and biosorption mechanism. Three acid anionic dyes containing Acid Orange 56, Acid Blue 40 and Methyl Blue were chosen as model dyes to investigate batch adsorption efficiency. Two adsorption models (in vivo and in vitro) were adopted to decolorize the acid dyes. The results show that fungus pellets have excellent decoloration abilities with a high adsorption efficiency of 98% for 200 mg L-1 of acid dye. The pH value of the dye solution varied with the adsorption time and the dye removal efficiency greatly depended on the pH. The bioadsorption mechanism of nano-scale hyphae was revealed to be mainly due to electrostatic interactions caused by the pH change. Furthermore, the surface morphologies of the fungus after adsorption indicated that the dyes had been adsorbed on the surface of the fungus mycelia. Moreover, prepared 3D fungus/GO aerogels demonstrated superior dye removal abilities compared with fungus aerogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据