4.7 Article

Tunable wrinkling of thin nematic liquid crystal elastomer sheets

期刊

PHYSICAL REVIEW E
卷 100, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.100.022701

关键词

-

向作者/读者索取更多资源

Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these instabilities through direct coupling between microscopic degrees of freedom, resulting from orientational ordering of rodlike molecules, and macroscopic strain. By a standard method of dimensional reduction, we construct a plate theory for thin sheets of nematic elastomer. We then apply this theory to the study of the formation of wrinkles due to compression of a thin sheet of nematic liquid crystal elastomer atop an elastic or fluid substrate. We find the scaling of the wrinkle wavelength in terms of material parameters and the applied compression. The wavelength of the wrinkles is found to be nonmonotonic in the compressive strain due to the presence of the nematic. Finally, due to soft modes, the critical stress for the appearance of wrinkles can be much higher than in an isotropic elastomer and depends nontrivially on the manner in which the elastomer was prepared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据