3.9 Article

Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments

期刊

PROGRESS IN ADDITIVE MANUFACTURING
卷 4, 期 3, 页码 291-313

出版社

SPRINGERNATURE
DOI: 10.1007/s40964-019-00075-9

关键词

Additive manufacturing; Design of experiments; 3D printing; Fused deposition modeling

向作者/读者索取更多资源

Additive manufacturing (AM) technologies allow the manufacturing of parts directly from 3D models. These technologies, initially focused on rapid prototyping applications, have been increasingly considered for the production of final functional parts with high value added. The strengths and advantages of current AM processes include support for improved geometry for complex parts, reduction in tooling costs, material savings, and reduction in design to manufacturing lead-times. Along with those benefits, there are still production quality and performance factors, such as dimensional accuracy, strength of parts, and surface roughness, which may need to be improved depending on the product requirements. Therefore, there is a demand to increase the understanding of how AM production factors influence the final part parameters. This paper focuses on the investigation and optimization of material consumption, manufacturing time and dimensional accuracy (including linear error and surface flatness), for fused deposition modeling (FDM) technology. A design of experiments (DOE) is planned, executed and analyzed. Results indicate that print speed and the number of contours are the most important factors for the quality of the final part of the FDM process studied. Further research may consider the same approach, and the factors presented could be extended for AM technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据