4.6 Article

Resistivity near a nematic quantum critical point: Impact of acoustic phonons

期刊

PHYSICAL REVIEW B
卷 100, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.100.115103

关键词

-

资金

  1. FAPESP [2017/16911-3]
  2. US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012336]

向作者/读者索取更多资源

We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the nontrivial impact of the coupling to the acoustic phonons. Due to the unavoidable linear coupling between the electronic nematic order parameter and the lattice strain fields, long-range nematic interactions mediated by the phonons emerge in the problem. By solving the semiclassical Boltzmann equation in the presence of scattering by impurities and nematic fluctuations, we determine the temperature dependence of the resistivity as the nematic QCP is approached. One of the main effects of the nematoelastic coupling is to smooth the electronic nonequilibrium distribution function, making it approach the simple cosine angular dependence even when the impurity scattering is not too strong. We find that at temperatures lower than a temperature scale set by the nematoelastic coupling, the resistivity shows the T-2 behavior characteristic of a Fermi liquid. This is in contrast to the T-4/3 low-temperature behavior expected for a lattice-free nematic quantum critical point. More importantly, we show that the effective resistivity exponent alpha(eff)(T) in rho(T) - rho(0) similar to T-alpha eff(T) displays a pronounced temperature dependence, implying that a nematic QCP cannot generally be characterized by a simple resistivity exponent. We discuss the implications of our results to the interpretation of experimental data, particularly in the nematic superconductor FeSe1-xSx.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据