4.7 Article

Cyanopolyyne Chemistry around Massive Young Stellar Objects

期刊

ASTROPHYSICAL JOURNAL
卷 881, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/1538-4357/ab2d9e

关键词

astrochemistry; ISM: abundances; ISM: molecules; stars: massive

资金

  1. University of Virginia
  2. National Science Foundation [AST-1514844]

向作者/读者索取更多资源

Recent radio astronomical observations have revealed that HC5N, the second shortest cyanopolyyne (HC2n+1N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For example, the observed HC5N abundance toward the G28.28-0.36 MYSO is higher than that in L1527, which is one of the warm carbon-chain chemistry sources, by more than one order of magnitude. In this paper, we present chemical simulations of hot-core models with a warm-up period using the astrochemical code Nautilus. We find that the cyanopolyynes are formed initially in the gas phase and accreted onto the bulk and surface of granular ice mantles during the lukewarm phase, which occurs at 25 < T < 100 K. In slow warm-up period models, the peak abundances occur as the cyanopolyynes desorb from dust grains after the temperature rises above 100 K. The lower limits of the abundances of HC5N, CH3CCH, and CH3OH observed in the G28.28-0.36 MYSO can be reproduced in our hot-core models, after their desorption from dust grains. Moreover, previous observations suggested chemical diversity in envelopes around different MYSOs. We discuss possible interpretations of relationships between stages of the star formation process and such chemical diversity, such as the different warm-up timescales. This timescale depends not only on the mass of central stars but also on the relationship between the size of warm regions and their infall velocity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据