3.8 Proceedings Paper

Scheduling Jobs with Random Resource Requirements in Computing Clusters

出版社

IEEE
DOI: 10.1109/infocom.2019.8737612

关键词

Scheduling Algorithms; Stability; Queues; Knapsack; Data Centers

资金

  1. NSF [CNS-1652115, CNS-1717867]

向作者/读者索取更多资源

We consider a natural scheduling problem which arises in many distributed computing frameworks. Jobs with diverse resource requirements (e.g. memory requirements) arrive over time and must be served by a cluster of servers, each with a finite resource capacity. To improve throughput and delay, the scheduler can pack as many jobs as possible in the servers subject to their capacity constraints. Motivated by the ever-increasing complexity of workloads in shared clusters, we consider a setting where the jobs' resource requirements belong to a very large number of diverse types or, in the extreme, even infinitely many types, e.g. when resource requirements are drawn from an unknown distribution over a continuous support. The application of classical scheduling approaches that crucially rely on a predefined finite set of types is discouraging in this high (or infinite) dimensional setting. We first characterize a fundamental limit on the maximum throughput in such setting, and then develop oblivious scheduling algorithms that have low complexity and can achieve at least 1/2 and 2/3 of the maximum throughput, without the knowledge of traffic or resource requirement distribution. Extensive simulation results, using both synthetic and real traffic traces, are presented to verify the perliwmance of our algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据