4.2 Article

Effect of temperature and punch speed on forming limit strains of AA5182 alloy in warm forming and improvement in failure prediction in finite element analysis: A case study

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0309324717704995

关键词

Warm forming; forming limit diagram; aluminum alloy; finite element simulation; warm deep drawing; failure prediction

向作者/读者索取更多资源

Formability of AA5182-O aluminum alloy sheets in the warm working temperature range has been studied. Forming limit strains of sheets of two different thicknesses have been determined experimentally in different modes of deformation (biaxial tension, plane strain and tension-compression) by varying temperature and punch speed. A correlation has been established for plane strain intercept of the forming limit diagram (FLD0) with temperature, punch speed and thickness from the experimental results. This correlation has been used to plot the forming limit diagrams for failure prediction in the finite element analysis of warm deep drawing of cylindrical cups. The effect of strain and strain rate on material flow behavior has been incorporated using a strain rate-sensitive power hardening law in which the strain hardening exponent and strain rate sensitivity index have been experimentally determined. The predictions from simulations have been validated by warm deep drawing experiments. Large improvement in accuracy of failure prediction has been observed using the FLDs plotted based on the developed correlation when compared to the existing method of calculating FLD0 using only strain hardening coefficient and thickness. The results clearly indicate the importance of incorporating temperature and punch speed in failure prediction of Al alloys using FLDs in the warm working temperature range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据