4.6 Article

Two-dimensional transition-metal halide CoBr3 with spin-polarized Dirac cone

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 32, 页码 17740-17745

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp03337h

关键词

-

资金

  1. Natural Science Foundation of Guizhou Provincial Provincial Education Department, China [KY[2015]384, KY[2015]446, KY[2017]053, KY[2017]315]
  2. Natural Science Foundation of Guizhou Provincial Science and Technology Agency [LH[2016]7294, LH[2018]1163]

向作者/读者索取更多资源

Recently, the discovery of two-dimensional transition-metal materials with non-trivial magnetic and electronic properties has spurred huge interest in investigating their applications in nanotechnology. Here, we report that the monolayer of CoBr3 possesses a quantum anomalous Hall insulating phase generated on the basis of first-principles calculations. We find that the CoBr3 monolayer is an intrinsic two-dimensional ferromagnetic material with a Curie temperature T-c = 264 K predicted from Monte Carlo simulations. The phonon spectra analysis indicates that the CoBr3 monolayer is dynamically stable. Taking into account spin-orbit coupling, this makes the electronic structure of the CoBr3 monolayer topologically non-trivial with a global band gap of 8.7 meV. The anomalous Hall conductivity calculation shows a Chern number C = 2, meaning the presence of a two edge state in nanoribbons of finite width. These findings not only add an experimentally feasible member to the quantum anomalous Hall insulator family, but also pave the way for highly promising application potentials in nanoelectronics and spintronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据