4.6 Article

Adaptive WENO Methods Based on Radial Basis Function Reconstruction

期刊

JOURNAL OF SCIENTIFIC COMPUTING
卷 72, 期 3, 页码 986-1020

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10915-017-0383-1

关键词

High-order WENO method; Radial basis functions; Hyperbolic conservation laws; Adaptivity; Multiquadrics

向作者/读者索取更多资源

We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discontinuous solutions. Thanks to the mesh-less property of the RBFs, the method is suitable for non-uniform grids and mesh adaptation. We focus on multiquadric radial basis functions and propose a simple strategy to choose the shape parameter to control the balance between achievable accuracy and the numerical stability. We also develop an original smoothness indicator which is independent of the RBF for the WENO reconstruction step. Moreover, we introduce type I and type II RBF-WENO methods by computing specific linear weights. The RBF-WENO method is used to solve linear and nonlinear problems for both scalar and systems of conservation laws, including Burgers equation, the Buckley-Leverett equation, and the Euler equations. Numerical results confirm the performance of the proposed method. We finally consider an effective conservative adaptive algorithm that captures moving shocks and rapidly varying solutions well. Numerical results on moving grids are presented for both Burgers equation and the more complex Euler equations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据