4.6 Article

Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 34, 页码 19691-19695

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta05885k

关键词

-

资金

  1. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), as part of the Battery 500 Consortium [DE-EE0008234]
  2. China Scholarship Council
  3. National Science Foundation [DMR 1351788, DMR 1809866]

向作者/读者索取更多资源

Covalently networked polymers offer desirable non-crystallinity and mechanical strength for solid polymer electrolytes (SPEs), but the chemically active cross-links involved in their construction could deteriorate the compatibility with high-energy cathode materials that are electrophilic and/or in the charged state. Herein we reveal a strong dependence of cyclability of such cathodes on the reactivity of covalently networked SPEs and demonstrate a polymer design that renders these SPEs chemically inert. We designed and synthesized two hybrid networks, both with polyethylene oxide as the cation conducting component and polyhedral oligomeric silsesquioxane as the branch point, but respectively use alkylamino and chemically inert triazole groups as cross-links. All-solid-state cells using the alkylamino-containing SPE underwent rapid degradation while cells using triazole SPEs showed stable cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据