4.7 Article

Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)

期刊

BIOGEOSCIENCES
卷 16, 期 16, 页码 3283-3296

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-16-3283-2019

关键词

-

资金

  1. European Commission (Horizon 2020 Marie Sklodowska-Curie Actions) [675546]
  2. UK Natural Environment Research Council Consortium (Black Bloom) [NE/M021025/1]
  3. NERC [NE/M020991/1, NE/M021025/1] Funding Source: UKRI

向作者/读者索取更多资源

Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93% of the total dissolved nitrogen and 67% of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0 mu M for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14 mu M for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05 mu M for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12 mu M for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 mu M, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07 mu M for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 mu M, medium: 173 mu M and high: 242 mu M) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 mu M, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NH4+, in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据