4.5 Article

The microscopic origin of the rheology in supramolecular entangled polymer networks

期刊

JOURNAL OF RHEOLOGY
卷 61, 期 6, 页码 1211-1226

出版社

JOURNAL RHEOLOGY AMER INST PHYSICS
DOI: 10.1122/1.4998159

关键词

-

向作者/读者索取更多资源

Supramolecular groups in polymeric systems lead to responsive materials which are ideally suited for applications in dynamic environments. The key to their advanced properties such as shape-memory or self-healing is the reversibility of secondary interactions which can be triggered by external stimuli such as temperature, light, or pH-value. Controlling the (mechanical) behavior of such systems requires a precise understanding of intrinsic properties. We present a multimethod study of transient polyisoprene networks that were functionalized with different amounts of hydrogen bonding urazole groups. This work aims at understanding rich rheological features on the basis of their microscopic origin. First, the thermorheological simple behavior is validated experimentally. Subsequently, we characterize the underlying microscopic processes by broadband dielectric spectroscopy (alpha-process and a alpha* -process), differential scanning calorimetry (glass transition behavior), and Fourier-transform infrared spectroscopy (thermodynamics of group association/dissociation). Based on these results, the influence of the supramolecular groups on the rheological response is analyzed. The observed features such as the onset of elastomeric properties in the flow regime, a drastic increase in the chain relaxation time with an increasing amount of functional groups, and the occurrence of a second rheological relaxation process, which is the most prominent effect, are discussed and related to their physical origin. (C) 2017 The Society of Rheology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据