4.7 Article

Envelope Convection, Surface Magnetism, and Spots in A and Late B-type Stars

期刊

ASTROPHYSICAL JOURNAL
卷 883, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab3924

关键词

convection; dynamo; stars: flare; stars: magnetic field; starspots

资金

  1. Simons Foundation

向作者/读者索取更多资源

Weak magnetic fields have recently been detected in a number of A-type stars, including Vega and Sirius. At the same time, space photometry observations of A and late B-type stars from Kepler and TESS have highlighted the existence of rotational modulation of surface features akin to stellar spots. Here we explore the possibility that surface magnetic spots might be caused by the presence of small envelope convective layers at or just below the stellar surface, caused by recombination of H and He. Using 1D stellar evolution calculations and assuming an equipartition dynamo, we make simple estimates of field strength at the photosphere. For most models, the largest effects are caused by a convective layer driven by second helium ionization. While it is difficult to predict the geometry of the magnetic field, we conclude that the majority of intermediate-mass stars should have dynamo-generated magnetic fields of order a few Gauss at the surface. These magnetic fields can appear at the surface as bright spots and cause photometric variability via rotational modulation, which could also be widespread in A-stars. The amplitude of surface magnetic fields and their associated photometric variability are expected to decrease with increasing stellar mass and surface temperature, so that magnetic spots and their observational effects should be much harder to detect in late B-type stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据