4.5 Article

Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jqsrt.2016.09.018

关键词

Elastic backscattering pattern; Laser trapping; Single airborne particle; Surface roughness; Image monitoring

资金

  1. Defense Threat Reduction Agency [HDTRS1518237, HDTRA1619734]
  2. US Army Research Laboratory mission funds

向作者/读者索取更多资源

We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of theta=167.7-180 degrees (including at 180 exactly) and phi=0-360 degrees in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back scattering intensity at 180 is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据