4.5 Article

The sheep (Ovis aries) muscle proteome: Decoding the mechanisms of tolerance to Seasonal Weight Loss using label-free proteomics

期刊

JOURNAL OF PROTEOMICS
卷 161, 期 -, 页码 57-67

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jprot.2017.03.020

关键词

Sheep; Skeletal muscle; Seasonal Weight Loss; Proteome

资金

  1. Department of Agriculture and Food of the Government of Western Australia (Perth, WA, Australia) [07ME06]
  2. FCT - Science and Technology Foundation of Portugal (Lisbon, Portugal) [SFRH/BPD/90916/2012, SFRH/BPD/69655/2010]
  3. 7th EU Framework program [0000241]
  4. Fundação para a Ciência e a Tecnologia [SFRH/BPD/69655/2010] Funding Source: FCT

向作者/读者索取更多资源

Seasonal Weight Loss (SWL) is one of the most pressing issues in animal production in the tropics and Mediterranean. This work aims to characterize muscle proteome changes as a consequence of SWL in meat producing sheep, using a label-free proteomics approach. We compare three breeds: the Australian Merino (SWL susceptible), the Damara (SWL tolerant) and the Dorper (SWL intermediate tolerance). We identified 668 proteins of the sheep proteome, 95 with differential regulation. Also we observe that the more vulnerable to SWL a breed is, the more differential abundance proteins we find. Protein binding was the most frequently altered molecular function identified. We suggest 6 putative markers for restricted nutritional conditions independently of breed: ferritin heavy-chain; immunoglobulin V lambda chain; transgelin; fatty acid synthase; glutathione S-transferase A2; dihydrodiol dehydrogenase 3-like. Moreover, we suggest as related to SWL tolerance: S100-A10 Serpin A3-5-like and Catalase, subject however to necessary validation assays. The identification of SWL-tolerance related proteins using proteomics will lead to increased stock productivity of relevant interest to animal production, particularly if identified at the muscle level, the tissue of economic importance in meat production. Biological significance: Seasonal Weight Loss (SWL) is the most pressing issue in animal production in the tropics and the Mediterranean. To counter SWL, farmers often use animal breeds that have a natural ability to withstand pasture scarcity. Here we study the sheep muscle proteome at the muscle level, the tissue of economic importance in meat production. Furthermore, the identification of proteins that change their abundance in response to SWL using proteomics can contribute to increased stock productivity of relevant interest to animal production. We identified 668 proteins of the sheep proteome. We demonstrate that the following proteins are affected by restricted nutritional conditions: ferritin heavy chain; immunoglobulin V lambda chain; transgelin; fatty acid synthase; glutathione S-transferase A2; dihydrodiol dehydrogenase 3-like. Furthermore, S100-A10, Serpin A3-5-like and Catalase are proteins that changed their abundance in response to SWL. Nevertheless, it is important to highlight that Catalase values for the merino breed were close to significance and therefore catalase validation is of utmost importance. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据