4.8 Article

Physically-based reduced-order capacity loss model for graphite anodes in Li-ion battery cells

期刊

JOURNAL OF POWER SOURCES
卷 342, 期 -, 页码 750-761

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2016.12.099

关键词

Reduced-order degradation model; Computationally efficient degradation model; Physically-based degradation model; Graphite/LiFePO4 cell; Battery aging

资金

  1. U.S. Department of Energy
  2. Purdue University
  3. Cummins Inc. through the Hoosier Heavy Hybrid Center of Excellence

向作者/读者索取更多资源

Physically-based Li-ion electrochemical cell models have been shown capable of predicting cell performance and degradation, but are computationally expensive for optimization-oriented design applications. Faster empirical models have been developed from experimental data, but are not generalizable to operating conditions outside of the range established by the calibration data. In this paper, a reduced order capacity-loss model for graphite anodes is derived based upon the salient physical loss mechanisms to improve computational efficiency without sacrificing model fidelity. This model captures the two primary degradation mechanisms that occur in the graphite anode of a typical lithium ion cell: a) capacity loss due to Solid Electrolyte Interface (SEI) layer growth, and b) capacity loss due to isolation of active material. The model is calibrated and validated for a commercial 2.3-Ah cell with a Lithium Iron Phosphate (LFP) cathode and graphite anode. One data set is used for calibration, another four experimental data sets are used for validation. The model matches experimental capacity degradation results within a 20% error. Moreover, the reported model is 2400x faster than currently existing more complex physically-based electrochemical models that are only slightly more accurate (in some cases). (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据