4.8 Article

Determination of the core temperature of a Li-ion cell during thermal runaway

期刊

JOURNAL OF POWER SOURCES
卷 370, 期 -, 页码 27-35

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2017.09.086

关键词

Lithium ion battery; Safety; Thermal runaway; Core temperature; Thermal modeling

资金

  1. National Science Foundation [CBET-1554183]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [1554183] Funding Source: National Science Foundation

向作者/读者索取更多资源

Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据