4.8 Article

Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 364, 期 -, 页码 359-366

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2017.08.053

关键词

Lithium-ion batteries; Ferrous carbonate; Reduced graphene oxide; Anode materials; Nanocomposites

资金

  1. Guangdong Science and Technology Planning Project [2015A020209147, 2016A050502048]
  2. Guangzhou Science and Technology Planning Project [201704030022]
  3. National Natural Science Foundation of China [51003034, 51602109, 21571066]
  4. Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province [20160102]

向作者/读者索取更多资源

The development of advanced 1D/2D hierarchical nanocomposites for high-performance lithium-ion batteries is important and promising. Herein, monodispersed FeCO3 nanorods anchored on reduced graphene oxide (RGO) are prepared via a facile and efficient one-pot hydrothermal synthesis. The influence of RGO content on the morphology and electrochemical performances of the mesoporous FeCO3/reduced graphene oxide (FeCO3/RGO) composites are systematically studied. Optimized FeCO3/RGO composite shows good cycling stability. It delivers an initial discharge capacity of 1449 mAh. g(-1) at the current density of 200 mA g(-1) and maintained a capacity of 789 mAh-g(-1) after 80 cycles. A moderate amount of RGO sheets can not only provide more conductive channels to improve the electrode conductivity, but also effectively buffer the large volume variation of FeCO3 during continuous charge/discharge process. The combination of FeCO3 nanorods with RGOs synergistically contribute to enhanced capacity and durability of the composite anode. It demonstrates that RGO anchored-FeCO3 nanorods should be an attractive candidate as anode material for high-performance lithium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据