3.8 Proceedings Paper

Enhanced performance of integrated silicon nanophotonic devices engineered with sub-wavelength grating structures

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2520780

关键词

Integrated optics; Silicon nanophotonics; Sub-wavelength grating metamaterials; Waveguide dispersion; Micro-ring resonators; Fiber-chip surface grating couplers; Waveguide-based grating filters

类别

资金

  1. European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (ERC POPSTAR grant) [647342]

向作者/读者索取更多资源

Sub-wavelength gratings, segmented resonant-less structures with geometries featuring scales considerably smaller than the wavelength of light, have enabled an attractive technological concept to locally control light guiding properties in planar silicon chip architectures. This concept has allowed for additional degrees of freedom to tailor effective mode index, modal confinement, waveguide dispersion, as well as anisotropy, thereby providing a vital route towards high performing devices with engineered optical properties. Sub-wavelength integrated nanophotonics has opened up new horizons for realization of key building components that afford outstanding device performances, typically beyond those achieved by conventional design strategies, yet favorably benefiting from the sub-100-nm pattern resolution of established semiconductor manufacturing tools in nanophotonic foundries. The distinctive features of sub-wavelength grating structures are considered essential for future generation of chip-scale applications in optical communications and interconnects, biomedicine, as well as quantum-based technologies. In this work, we report recent advances in the development of high-performance on-chip nanophotonic waveguides and devices engineered with the sub-wavelength grating metamaterial structures. In particular, we discuss recent achievements of low-loss waveguides with controlled chromatic dispersion, high-efficiency fiber-to-chip surface grating couplers, micro-ring resonators, and grating-assisted waveguide filters, implemented on the mature silicon-on-insulator technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据