3.8 Proceedings Paper

T2SL Digital Focal Plane Arrays for Earth Remote Sensing Applications

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2522145

关键词

type-II superlattice; infrared detector; quantum efficiency; digital; focal plane array

资金

  1. NASA Earth Science Technology Office
  2. National Aeronautics and Space Administration

向作者/读者索取更多资源

Long-wavelength infrared (LWIR) focal plane arrays (FPAs) needed for Earth Science imaging, spectral imaging, and sounding applications have always been among the most challenging in infrared photodetector technology due to the rigorous material growth, device design and fabrication demands. Future small satellite missions will present even more challenges for LWIR FPAs, as operating temperature must be increased so that cooler (and radiator) volume, mass, and power can be reduced. To address this critical need, we are working on following three technologies. 1) Type-II superlattice (T2SL) barrier infrared detector (BIRD), which combines the high operability, spatial uniformity, temporal stability, scalability, producibility, and affordability advantages of the quantum well infrared photodetector (QWIP) FPA with the better quantum efficiency and dark current characteristics. A mid-wavelength infrared (MWIR) T2SL BIRD FPA is a key demonstration technology in the (6U) CubeSat Infrared Atmospheric Sounder (CIRAS) funded under the ESTO InVEST Program. A LWIR T2SL BIRD FPA is also being developed under the ESTO SLI-T Program for future thermal infrared (TIR) land imaging needs. 2) The resonator pixel technology, which uses nanophotonics light trapping techniques to achieve strong absorption in a small detector absorber volume, thereby enabling enhanced QE and/or reduced dark current. 3) High dynamic range 3D Readout IC (3D-ROIC), which integrates a digital reset counter with a conventional analog ROIC to provide a much higher effective well capacity than previously achievable. The resulting longer integration times are especially beneficial for high flux/dark current LWIR applications as they can improve signal-to-noise ratio and/or increase the operating temperature. By combining the aforementioned technologies, this project seeks to demonstrate a cost-effective, high-performance LWIR FPA technology with significantly higher operating temperature and sensitivity than previously attainable, and with the flexibility to meet a variety of Earth Science TIR measurement needs, particularly the special requirements of small satellite missions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据