4.6 Article

Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 595, 期 15, 页码 5129-5142

出版社

WILEY
DOI: 10.1113/JP274268

关键词

Kir2; 1 channels; K2P1 channels; resting membrane potential

资金

  1. National Institute of General Medical Sciences [R01GM102943]
  2. American Heart Association [11GRNT7270014]
  3. National Natural Science Foundation of China [81370296, 81370297]
  4. Shanghai Pujiang Program [15PJ1406900]

向作者/读者索取更多资源

Inward rectifier K+ channel subfamily 2 (Kir2) channels primarily maintain the normal resting membrane potential of cardiomyocytes. At subphysiological extracellular K+ concentrations or pathological hypokalaemia, human cardiomyocytes show both hyperpolarized and depolarized resting membrane potentials; these depolarized potentials cause cardiac arrhythmia; however, the underlying mechanism is unknown. In the present study, we show that inward rectifier K+ channel subfamily 2 isoform 1 (Kir2.1) currents non-linearly counterbalance hypokalaemia-induced two pore-domain K+ channel isoform 1 (K2P1) leak cation currents, reconstituting two levels of resting membrane potential in cardiomyocytes. Under hypokalaemic conditions, both human cardiomyocytes derived from induced pluripotent stem cells with enhanced Kir2.1 expression and mouse HL-1 cardiomyocytes with ectopic expression of K2P1 channels recapitulate two levels of resting membrane potential. These cardiomyocytes display N-shaped current-voltage relationships that cross the voltage axis three times and the first and third zero-current potentials match the two levels of resting membrane potential. Inhibition of K2P1 expression eliminates the phenomenon, indicating contributions of Kir2.1 and K2P1 channels to two levels of resting membrane potential. Second, in Chinese hamster ovary cells that heterologously express the channels, Kir2.1 currents non-linearly counterbalance hypokalaemia-induced K2P1 leak cation currents, yielding the N-shaped current-voltage relationships, causing the resting membrane potential to spontaneously jump from hyperpolarization at the first zero-current potential to depolarization at the third zero-current potential, again recapitulating two levels of resting membrane potential. These findings reveal ionic mechanisms of the two levels of resting membrane potential, demonstrating a previously unknown mechanism for the regulation of excitability, and support the hypothesis that Kir2 currents non-linearly balance inward background cation currents, accounting for two levels of resting membrane potential of human cardiomyocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据