4.6 Article

Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 595, 期 18, 页码 6121-6145

出版社

WILEY
DOI: 10.1113/JP274164

关键词

ion channel; palmitoylation; taste

资金

  1. Japan Society of the Promotion of Science [26713008, 16K15181, 16K18991, 25670111, 15K15034]
  2. Salt Science [1235, 1429, 1542]
  3. Society for Research on Umami Taste
  4. KITKPUM-KPU-KPhU Collaborative Research Grant
  5. Kyoto-Funding for Innovation in Health-related RD Fields
  6. Fuji Foundation for Protein Research
  7. Cell Research Conference
  8. Grants-in-Aid for Scientific Research [26713008, 16K18991, 17K08552, 16K15181, 15K15034] Funding Source: KAKEN

向作者/读者索取更多资源

Key points Calcium homeostasis modulator 1 (CALHM1), a new voltage-gated ATP- and Ca2+-permeable channel, plays important physiological roles in taste perception and memory formation. Regulatory mechanisms of CALHM1 remain unexplored, although the biophysical disparity between CALHM1 gating in vivo and in vitro suggests that there are undiscovered regulatory mechanisms. Here we report that CALHM1 gating and association with lipid microdomains are post-translationally regulated through the process of protein S-palmitoylation, a reversible attachment of palmitate to cysteine residues. Our data also establish cysteine residues and enzymes responsible for CALHM1 palmitoylation. CALHM1 regulation by palmitoylation provides new mechanistic insights into fine-tuning of CALHM1 gating in vivo and suggests a potential layer of regulation in taste and memory. Emerging roles of CALHM1, a recently discovered voltage-gated ion channel, include purinergic neurotransmission of tastes in taste buds and memory formation in the brain, highlighting its physiological importance. However, the regulatory mechanisms of the CALHM1 channel remain entirely unexplored, hindering full understanding of its contribution in vivo. The different gating properties of CALHM1 in vivo and in vitro suggest undiscovered regulatory mechanisms. Here, in searching for post-translational regulatory mechanisms, we discovered the regulation of CALHM1 gating and association with lipid microdomains via protein S-palmitoylation, the only reversible lipid modification of proteins on cysteine residues. CALHM1 is palmitoylated at two intracellular cysteines located in the juxtamembrane regions of the third and fourth transmembrane domains. Enzymes that catalyse CALHM1 palmitoylation were identified by screening 23 members of the DHHC protein acyltransferase family. Epitope tagging of endogenous CALHM1 proteins in mice revealed that CALHM1 is basally palmitoylated in taste buds in vivo. Functionally, palmitoylation downregulates CALHM1 without effects on its synthesis, degradation and cell surface expression. Mutation of the palmitoylation sites has a profound impact on CALHM1 gating, shifting the conductance-voltage relationship to more negative voltages and accelerating the activation kinetics. The same mutation also reduces CALHM1 association with detergent-resistant membranes. Our results comprehensively uncover a post-translational regulation of the voltage-dependent gating of CALHM1 by palmitoylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据