4.8 Article

Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots

期刊

NANOSCALE
卷 11, 期 35, 页码 16553-16561

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr05422g

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [MOST 108-2221-E-155-036-MY3]

向作者/读者索取更多资源

Highly fluorescent N-doped graphene quantum dots (NGQDs) and graphitic carbon nitride quantum dots (CNQDs, g-C3N4) were synthesized using a solid-phase microwave-assisted (SPMA) technique. The SPMA method, based on the pyrolysis of citric acid and urea with different recipes, is capable of producing quantum dots with coexisting NGQDs and CNQDs at 280 degrees C within only five minutes. The photoluminescence (PL) emissions from NGQD and CNQDs are strongly dependent on the excitation wavelength and the solvent type, i.e., water, ethanol, and N-methyl pyrrolidinone. The unique attribute of the quantum dots, possessing a multiple chromophoric band-gap structure, originates from the presence of g-C3N4, defect-related emissive traps, and grain boundaries. Thus, an appropriate excitation wavelength induces a conjugated pi electron system to fulfill the most probable absorption band, resulting in wavelength-dependent emissions including ultraviolet, visible and infrared light. The quantum yield of the NGQD and CNQD samples can reach as high as 68.1%. Accordingly, a light-emitting device using the combination of the NGQD and CNQD powder embedded polymeric film can emit white-like light with ultra-high power-conversion efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据