4.8 Article

Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 12, 期 9, 页码 2765-2777

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ee01214a

关键词

-

资金

  1. European Union [640720]
  2. Swedish Energy Agency [P46607-1]
  3. NordForsk NCoE program NordAqua [82845]

向作者/读者索取更多资源

Cyanobacteria are photoautotrophic microorganisms which can be engineered to directly convert CO2 and water into biofuels and chemicals via photosynthesis using sunlight as energy. However, the product titers and rates are the main challenges that need to be overcome for industrial applications. Here we present systematic modular engineering of the cyanobacterium Synechocystis PCC 6803, enabling efficient biosynthesis of 1-butanol, an attractive commodity chemical and gasoline substitute. Through introducing and re-casting the 1-butanol biosynthetic pathway at the gene and enzyme levels, optimizing the 5 '-regions of expression units for tuning transcription and translation, rewiring the carbon flux and rewriting the photosynthetic central carbon metabolism to enhance the precursor supply, and performing process development, we were able to reach a cumulative 1-butanol titer of 4.8 g L-1 with a maximal rate of 302 mg L-1 day(-1) from the engineered Synechocystis. This represents the highest 1-butanol production from CO2 reported so far. Our multi-level modular strategy for high-level production of chemicals and advanced biofuels represents a blue-print for future systematic engineering in photosynthetic microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据