4.5 Article

Quantum confinement in multi-nanolayer sandwich systems

期刊

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS
卷 110, 期 -, 页码 354-363

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2017.06.032

关键词

-

向作者/读者索取更多资源

Presently we explored quantum confinement (QC) in three-nanolayer sandwich systems, composed of Au-SnO2-Fe, Au-SnO2-Si and Au-SnO2-Ag layers. We recorded the absorption spectra of these sandwich systems, all with discrete structure. We recorded the action spectra of the photocurrent for the Au-SnO2-Fe sandwich system, with the photocurrent quantum yields increasing with the photon energy, achieving 3.1 at 4.7 x 10(4) cm(-1). The photocurrent action spectra correlate with high accuracy with optical absorption spectra. We discuss the mechanisms determining the absorption bandwidth value, including surface imperfections, thermal distribution of the vibrational level populations in the electronic ground state, and the diabatic coupling of levels of the excited state to those of a dark state. Volt-Ampere (V/A) characteristics were recorded for all three of the sandwich systems, quite similar to those of a Schottky diode. We report the parameter values of the V/A characteristics, found by fitting the experimental data with a theoretical curve. We also report charge density changes in the SnO2 layer caused by low constant voltage applied to the sandwich structure, observed as changes in the absorption band intensity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据