4.6 Article

Transport in active systems crowded by obstacles

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1751-8121/50/7/074001

关键词

active system; Janus motor; crowded system

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Foundation for Innovation under Compute Canada
  3. Government of Ontario
  4. Ontario Research Fund-Research Excellence
  5. University of Toronto

向作者/读者索取更多资源

The reactive and diffusive dynamics of a single chemically powered Janus motor in a crowded medium of moving but passive obstacles is investigated using molecular simulation. It is found that the reaction rate of the catalytic motor reaction decreases in a crowded medium as the volume fraction of obstacles increases as a result of a reduction in the Smoluchowski diffusion-controlled reaction rate coefficient that contributes to the overall reaction rate. A continuum model is constructed and analyzed to interpret the dependence of the steady-state reaction rate observed in simulations on the volume fraction of obstacles in the system. The steady-state concentration fields of reactant and product are shown to be sensitive to the local structure of obstacles around the Janus motor. It is demonstrated that the active motor exhibits enhanced diffusive motion at long times with a diffusion constant that decreases as the volume fraction of crowding species increases. In addition, the dynamical properties of a passive tracer particle in a system containing many active Janus motors is studied to investigate how an active environment influences the transport of non-active species. The diffusivity of a passive tracer particle in an active medium is found to be enhanced in systems with forward-moving Janus motors due to the cooperative dynamics of these motors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据