4.6 Article

Are Functional Groups Beneficial or Harmful on the Electrochemical Performance of Activated Carbon Electrodes?

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 166, 期 6, 页码 A1004-A1014

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0451906jes

关键词

-

资金

  1. Ministry of Science, Research and Art (MWK) Baden-Wurttemberg through the Brigitte-Schlieben-Lange-Programm

向作者/读者索取更多资源

It is a common opinion that activated carbon (AC) should be functional groups-free when employed as capacitor-type material in organic electrolytes. This work analyzes in detail the relationship between the electrochemical performance of modified activated carbon electrodes and the introduced functional groups in two organic electrolytes containing lithium salts:1M LiPF6 in EC-DMC (the commercial LP30) and 1M LiTFSI in EC-DMC. The surface functional groups (especially C=O or O-C=O) can induce higher capacitance to AC (more than 50% increase compared to commercial unmodified AC), whereas the rate capability dramatically decreases. The appropriate amount of functional groups is helpful to expand the electrochemical stability window in LP30 (2.8-2.9 V), that is responsible for the high energy and power density. Moreover, the proper functional groups inhibit the potential shift of the AC electrode. However, a large number of functionalities can result in a high amount of irreversible redox products remaining in the pores of AC, which leads to a faster capacitance fade respect to materials with less functional groups. (C) The Author(s) 2019. Published by ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据