4.6 Article

Fermi's golden rule, the origin and breakdown of Markovian master equations, and the relationship between oscillator baths and the random matrix model

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1751-8121/aa8777

关键词

open quantum systems; spontaneous emission; quantum noise

向作者/读者索取更多资源

Fermi's golden rule applies to a situation in which a single quantum state vertical bar psi > is coupled to a near-continuum. This 'quasi-continuum coupling' structure results in a rate equation for the population of vertical bar psi >. Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a 'cascade' made up of the quasi-continuum coupling structures of Fermi's golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the 'random matrix model' (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据