4.8 Article

Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 8, 期 20, 页码 5021-5030

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.7b02012

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (Ministry of Science, ICT & Future Planning) [2016R1A4A1012224]

向作者/读者索取更多资源

Despite their high specific capacity, sodium layered oxides suffer from severe capacity fading when cycled at higher voltages. This key issue must be addressed in order to develop high-performance cathodes for sodium ion batteries (SIBs). Herein, we present a comprehensive study on the influence of Al doping of Mn sites on the structural and electrochemical properties of a P2- Na0.5Mn0.5-xAlxCo0.5O2 (x = 0, 0.02, or 0.05) cathode for SIBs. Detailed structural, morphological, and electrochemical investigations were carried out using X-ray diffraction, cyclic voltammetry, and galvanostatic charge-discharge measurements, and some new insights are proposed. Rietveld refinement confirmed that Al doping caused TMO6 octahedra (TM = transition metal) shrinkage, resulting in wider interlayer spacing. After optimizing the aluminum concentration, the cathode exhibited remarkable electrochemical performance, with better stability and improved rate performance. Electrochemical impedance spectroscopy (EIS) measurements were performed at various states of charge to probe the surface and bulk effects of Al doping. The material presented here exhibits exceptional stability over 100 cycles within a 1.5-4.3 V window and outperforms several other Mn-Co-based cathodes for SIBs. This study presents a facile method for designing structurally stable cathodes for SIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据