4.7 Article

Lattice Boltzmann method for thin-liquid-film hydrodynamics

期刊

PHYSICAL REVIEW E
卷 100, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.100.033313

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence Engineering of Advanced Materials [EXC 315]
  2. EC Research Innovation Action under the H2020 Programme [INFRAIA-2016-1-730897]
  3. Consiglio Nazionale delle Ricerche (CNR)

向作者/读者索取更多资源

We propose an approach to the numerical simulation of thin-film flows based on the lattice Boltzmann method. We outline the basic features of the method, show in which limits the expected thin-film equations are recovered, and perform validation tests. The numerical scheme is applied to the viscous Rayleigh-Taylor instability of a thin film and to the spreading of a sessile drop toward its equilibrium contact angle configuration. We show that the Cox-Voinov law is satisfied and that the effect of a tunable slip length on the substrate is correctly captured. We address, then, the problem of a droplet sliding on an inclined plane, finding that the Capillary number scales linearly with the Bond number, in agreement with experimental results. At last, we demonstrate the ability of the method to handle heterogenous and complex systems by showcasing the controlled dewetting of a thin film on a chemically structured substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据