4.6 Article

Doping Effect on the Thermal Conductivity of Metal Oxide Nanofluids: Insight and Mechanistic Investigation

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 121, 期 47, 页码 26551-26557

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.7b10020

关键词

-

向作者/读者索取更多资源

Nanofluids which are dispersions of nano particles in liquids, are known to exhibit anomalous heat transfer properties compared to conventional base liquids. Numerous mechanisms were proposed to explain the unusual enhancement in thermal conductivity of nanofluids, including Brownian motion, interfacial thermal resistance, and conduction due to particle aggregation. In the present study, the individual contributions of the various mechanisms are detailed. Nanofluids of pristine metal oxides (ZnO and CuO) and of Zn2+-doped CuO in water as base fluid were sonochemically prepared, without a surfactant, using a probe sonicator. Varying the specific heat capacity (C-p) of the synthesized nanomaterials was exploited to understand the interfacial resistance (Kapitza resistance) in the base liquid, which influences the thermal flow'etween the particle and the liquid molecules wrapping over the particle surface (the nanolayer). The thermal conductivity was evaluated at two different concentration ranges. The enhancement at low concentrations is attributed to Brownian motion and thermophoresis, whereas the rise in the heat transfer at the higher concentration range was ascribed to the conduction mechanism that results from particle aggregation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据